Vol. 77, No. 3/ 2025 INMATEH - Agricultural Engineering

EMPIRICAL ANALYSIS OF SMART AGRICULTURE’S IMPACT
ON THE AGRICULTURAL ECONOMY BASED ON THE COBB-DOUGLAS
PRODUCTION FUNCTION

/
BT E R HTET 7> B B E R M X KM 2857 5 M SEUE BT
Ping ZHANG

School of Digital Business, Wuxi Vocational Institute of Commerce, Wuxi, 214153, China
E-mail: wxiczhangping@outlook.com
DOI: https://doi.org/10.35633/inmateh-77-15

Keywords: Smart agriculture, Cobb-Douglas production function, Agricultural economic growth, Panel data,
Technological efficiency

ABSTRACT

This paper uses panel data from Sichuan Province and Shandong Province from 2012 to 2022 to build an
evaluation index system for the development of smart agriculture. It systematically assesses the impact and
internal mechanism of smart agriculture on regional agricultural economic growth. This assessment is based
on the Cobb-Douglas production function and panel regression methods. The regression results show that for
each unit increase in the level of smart agriculture development, the elasticity contribution to agricultural
economic output is 0.42, which is significantly higher than that of capital (0.28) and labor (0.17). Provincial
regressions reveal significant differences, with Sichuan showing an elasticity coefficient of 0.45 and
Shandong 0.37. Smart agriculture plays a significant and positive role in promoting agricultural economic
growth. lts effect surpasses that of traditional input factors. Moreover, the effect of smart agriculture varies
across regions. The analysis of mediation effects further shows the role of technological progress. It serves as
a key pathway through which smart agriculture influences agricultural economic growth. Robustness checks
and extended analyses confirm the reliability of these findings. Finally, the paper puts forward policy
recommendations focusing on strengthening technological innovation, improving infrastructure, and
cultivating talent.
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INTRODUCTION

Since the beginning of the 21st century, agricultural modernization has increasingly become a key
strategy for enhancing agricultural competitiveness, ensuring food security, and promoting rural revitalization
across countries. Smart agriculture integrates advanced technologies such as the Internet of Things, big data,
and artificial intelligence. It enables intelligent, precise, and visualized agricultural production. It has become a
major driving force in the transformation from traditional to modern agriculture (Belay et al., 2024; Srinivasan
and Yadav, 2024). Most current studies on the impact of smart agriculture on agricultural economic growth
focus on policy advocacy and technical pathways. However, they often lack solid empirical evidence at the
regional level. This is especially true for quantifying economic contributions, clarifying underlying mechanisms,
and identifying regional heterogeneity. In agricultural economic research, the Cobb-Douglas (CD) production
function is widely used due to its simplicity and the strong interpretability of its elasticity parameters. It is
commonly applied to identify influencing factors and analyze the contribution of different inputs ( Tabe-Ojong
et al., 2024).
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For example, Priyatna et al. (2025) adopted a stochastic frontier version of the CD production function
combined with maximum likelihood estimation to analyze data from 35 rice farmers. Their results show an
average technical efficiency of 75%, suggesting that optimized resource allocation could increase output by
25%. Land, seeds, fertilizer, labor, and farming experience were identified as the main influencing factors.
Similarly, Opuala-Charles et al. (2025) examined the applicability of the "sectoral big push" theory in Nigeria
from 1985 to 2023. They proposed an empirical model based on the CD production function and an
autoregressive distributed lag model. They analyzed government investment, income inequality, labor
utilization, and technology across the service, agricultural, and industrial sectors. The results show that
government investment significantly promotes economic growth in all three sectors, with the strongest
response in services. However, most existing empirical studies remain at the macro level, leaving gaps in
understanding regional differences, mechanisms of influence, and the construction of evaluation indicators. In
response, this paper selects Sichuan and Shandong—two provinces with significantly different development
foundations—as the focus of comparative analysis. Based on an extended CD production function model, it
constructs a regional panel regression system. The model includes a composite input structure. This structure
incorporates a systematically developed smart agriculture development index alongside traditional factors
such as land, capital, and labor. The analysis introduces interaction terms and mediating variables to capture
the indirect effects and regional characteristics of smart agriculture. The research aims to answer three main
questions: What is the actual impact of smart agriculture on agricultural economic growth? What mechanism
does smart agriculture follow in promoting economic development? And how does this effect vary across
different regions? Therefore, this research aims to address the following research objectives: (1)
Quantitatively assess the elasticity contribution of smart agriculture to agricultural economic growth in
selected regions; (2) Identify the mediating role of technological progress in the influence path of smart
agriculture; (3) Explore the regional heterogeneity in the effects of smart agriculture and derive differentiated
policy implications. The innovation of this paper lies in building a comprehensive evaluation index system for
smart agriculture and conducting a comparative analysis of regional differences.

MATERIALS AND METHODS
Theoretical foundation and research hypotheses
Theoretical analysis of the CD function and smart agriculture

The CD production function, first proposed by Charles Cobb and Paul Douglas in 1928, effectively
measures the elasticity contribution of capital, labor, and smart agriculture to agricultural output. It is widely
applied in empirical studies on agricultural economic growth and production efficiency (Muhammad et al.,
2023; Lopez Santiago et al., 2023). The general form is shown in Equation (1).

Y = AK“I/ Q)
In Equation (1), Y represents output. K and L refer to capital input and labor input, respectively.
A is the technological progress parameter, which captures all other factors affecting output beyond capital

and labor. @ and f represent the output elasticities of capital and labor. If a+ £ =1, it indicates constant

returns to scale. If a+ B >1, it indicates increasing returns to scale. If a+ <1, it indicates decreasing
returns to scale.

Mechanisms and input structure through which smart agriculture affects the agricultural economy

Smart agriculture promotes improvements in production efficiency and optimization of resource
allocation. It also upgrades the labor structure, enhances capital utilization efficiency, and refines industrial
chains. These are concrete manifestations of endogenous technological progress, as emphasized by the new
economic growth theory (Ahmed et al., 2024). The actual impact depends on regional infrastructure, talent
availability, and the level of industrial promotion.

Formulation of research hypotheses

Based on the theoretical analysis above and the mechanisms through which smart agriculture affects
agricultural economic growth, this study puts forward the following three research hypotheses: H1: The
development level of smart agriculture has a significant positive effect on agricultural economic growth. After
controlling for traditional input factors such as capital, labor, and land, improvements in smart agriculture can
effectively increase agricultural output. H2: Compared with traditional input factors, smart agriculture plays a
more significant role in promoting agricultural economic growth, indicating that it has become a key driver for
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the high-quality development of modern agriculture. H3: The impact of smart agriculture on agricultural
economic growth varies across regions. Regions with different economic foundations and development
stages show clear differences in marginal effects and operating mechanisms. This study constructs a
multidimensional evaluation index system and a regression model. It conducts a systematic empirical test of
the above hypotheses. The goal is to reveal the actual path and internal mechanisms through which smart
agriculture promotes agricultural economic growth under different regional conditions.

Data and variable design
Data sources and processing

To provide a clearer understanding of the geographical features of the study areas, this study briefly
analyzes the spatial location of Sichuan Province and Shandong Province. Their geographic distribution is
shown in Figure 1.

Shandong

Sichuan

Fig. 1 - Schematic diagram of the geographical location of Sichuan Province and Shandong Province
(Source from: https://openmaptiles.org/languages/zh/#0.6/0/0)

As shown in Fig. 1, Sichuan Province is located in the southwest inland region of China. Its terrain
mainly consists of basins and hills, with a mild climate and synchronized rainfall and heat, which makes it
suitable for the cultivation of various crops. Its agriculture focuses on rice, rapeseed, and pig farming. In
recent years, smart agriculture has been preliminarily promoted in areas such as the Chengdu Plain.
Shandong Province, located along the eastern coast of China, features flat terrain and concentrated arable
land. It is one of the country's major production bases for wheat, corn, peanuts, and fruits and vegetables.
With a higher level of mechanization and informatization in agriculture, Shandong has a more solid foundation
for the development of smart agriculture. The two provinces have different topography and resource
endowments. As a result, their agricultural economic structures show distinct characteristics. These
differences also provide a practical basis for region-specific development paths of smart agriculture.

Index system construction and evaluation method for smart agriculture

Based on the core concept of smart agriculture and actual conditions across different regions, this
study builds an evaluation index system to measure the development level of smart agriculture in Sichuan
and Shandong provinces from multiple dimensions. The smart agriculture development index considers
several dimensions. These include |oT coverage, big data application, automation rate, and equipment
penetration rate. The entropy method and Analytic Hierarchy Process (AHP) are used to assign weights. A
linear weighted sum method is applied to calculate the composite score (Uthaman and Raj 2024; Morkunas
and Volkov, 2023).

The specific calculation is shown in Equation (2).

SAI =) w,x X, 2)
i=1
In Equation (2), SA4I represents the comprehensive smart agriculture development index. w,

denotes the weight of the i-th indicator, and X, denotes the standardized value of the corresponding
indicator.
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Variable selection and explanation

Evaluating smart agriculture requires reflecting the level of technology application, infrastructure
development, talent support, and industrial promotion. Based on the actual conditions of smart agriculture in
China, this study establishes a smart agriculture development evaluation index system, which includes both
primary and secondary indicators. The specific indicators are shown in Table 1.

Table 1
Indicators for the development level of smart agriculture

First-level indicator Second-level indicator Weight
Internet of Things coverage rate 0.12
Technological foundation Big data application intensity 0.10
Automation control rate 0.10
Penetration rate of smart agricultural equipment 0.12

Infrastructure development
Rural broadband access rate 0.10
Proportion of smart agricultural professionals 0.10
Talent support . .

Coverage rate of smart agricultural training 0.08
Number of smart agricultural demonstration parks 0.10
Industrial promotion Proportion of area under smart agricultural use 0.10
Number of smart agricultural enterprises 0.08

As shown in Table 1, in the dimension of technology infrastructure, both loT coverage and automation
control rate carry a weight of 0.10 or higher. The weight for the strength of big data application is 0.10,
highlighting the importance of data-driven agricultural production. In the talent support dimension, the weight
of smart agriculture professionals is 0.10, while the training coverage rate is slightly lower at 0.08, reflecting a
policy focus on core human resources and a gap in training coverage. In the dimension of industrial promotion,
the number of demonstration parks and the proportion of smart agriculture application area both carry weights
of 0.10, emphasizing a balance between the breadth and depth of application. The number of smart
agriculture enterprises is assigned a weight of 0.08, slightly lower, possibly indicating early-stage
development or statistical difficulty in some regions.

Model construction and estimation methods
Basic CD model and extended specification
In practice, a log-linear transformation is usually applied to the model to facilitate regression analysis.
The expression is shown in Equation (3).
InY=InA+alnK+pfInL+e¢ (3)
The study introduces the smart agriculture variable into the model in Equation (3). This allows further
exploration of its effect on agricultural economic growth. Based on the classic CD production function, this
study incorporates the smart agriculture development level into an extended production function model, as
shown in Equation (4).
Y, = AizK:Lg‘SA;eg” (4)
In Equation (4), Y, represents the agricultural economic output of region i inyear ¢. A4, denotes
the rate of technological progress. S4, represents the development level of smart agriculture, and 7 is the

output elasticity of smart agriculture. ¢ is the random error term, which follows a normal distribution. To

facilitate linear regression analysis, a logarithmic transformation is applied to the production function, yielding
the log-linear model shown in Equation (5).

InY=In4, +alnK, + fInL, +yInS4, + ¢, (5)
In Equation (5), ¢, represents the random error value. This study further introduces control

variables to account for possible differences in policy environment and land resource scale in actual
agricultural production. These variables include land area and policy environment. The final model is shown in
Equation (6).
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InY, =g, +alnK, + fInL, +yInS4, + 6, In Land,, + 6,Policy, + ¢, (6)
In Equation (6), B, denotes the constant term. Land, represents the scale of land input in region i

in year t. Policy, is the dummy variable for the smart agriculture policy environment. 8, and o, are the
coefficients representing the effects of land area and policy environment, respectively.

Empirical strategy and data analysis methods

This study uses fixed effects panel regression, Variance Inflation Factor (VIF) test,
heteroskedasticity-robust standard errors, instrumental variable method, and Pearson correlation to conduct
regression analysis. The research uses panel data from Sichuan and Shandong provinces from 2012 to 2022,
which vary across time and regions. Therefore, panel data analysis is appropriate (Ucan et al. 2024;
Santalucia and Sibhatu, 2024). Specifically, the Fixed Effects (FE) model is selected to capture unobserved
regional heterogeneity. The general form of the fixed effects model is shown in Equation (7).

InY, =4, +alnK, + fInL, +yInS4, + 6, In Land, + 0,Policy, + 1. + ¢, (7)

In Equation (7), u; represents regional fixed effects used to control for unobservable heterogeneity

caused by historical, cultural, and economic development differences. To verify the appropriateness of using
the FE model, the Hausman test is conducted. The null hypothesis is that the Random Effects (RE) model is
consistent. If the null hypothesis is rejected at the 5% significance level, the FE model is considered more
suitable (Al-Adamat et al., 2024). The formula for the Hausman test statistic is shown in Equation (8).

H = (Pry = Pre) Var(fry) —Var( Py )] (Bre = Pre) (8)
In Equation (8), /., and j,, representthe parameter vectors estimated by the FE and RE models,

respectively. Var(ﬁ) denotes the corresponding variance of the parameter estimates. To ensure the

robustness of the empirical analysis, VIF test, endogeneity test, and heteroskedasticity test are further
conducted (Afouna and Ali 2024, Ekpa et al., 2023). The VIF test examines multicollinearity among variables
by calculating the variance inflation factor, as shown in Equation (9).

1
TR ©

J
In Equation (9), Rf represents the coefficient of determination when the J -th independent variable

is regressed on all other independent variables. In general, a VIF value less than 10 indicates no serious
multicollinearity. For the endogeneity test, this study uses the instrumental variable method, with the
one-period lag of the smart agriculture development level as the instrument. The first-stage regression is
shown in Equation (10).

InS4, =7, + 7, InS4, | + Z Controls,, + 1, +v, (10)

In Equation (10), the first-stage regression uses the instrumental variable to predict the smart
agriculture variable. The second-stage regression substitutes the predicted value into the main equation, as
shown in Equation (11).

InY, =4, +alnK, +InL, +yln SA”’1 + 0, InLand,, + 6,Policy, + i, + ¢, (11)

In Equation (11), InS4,, represents the predicted value from the first-stage regression.

Mediation effect analysis and robustness testing methods

This study introduces the technological progress variable as a mediating variable to explore the
mechanism through which smart agriculture promotes agricultural economic growth. The three-step mediation
test is then applied. The equations are shown in Equation (12).

InY, =c,+c InS4, + Z Controls, + u. + ¢,
TFP, =a,+a,InS4, + z Controls, + u. +u, (12)
InY, =b, + b InS4, +b,TFP, + Y Controls, + i, + &,
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In Equation (12), TFP is the technical efficiency index. The second step tests the impact of smart
agriculture on technological progress. The third step examines the combined effect of smart agriculture and
technological progress on agricultural output. In the heteroskedasticity robustness test, the White test is used
to detect heteroskedasticity in the model, and the corrected standard errors are estimated using robust
standard errors (Zanré and Combary 2024). To estimate the elasticity coefficients of each production factor in
the CD production function, ordinary least squares regression is used to fit the log-linearized model, and
heteroskedasticity-robust standard errors are used to reduce estimation bias. In addition, to address potential
endogeneity, some models apply the instrumental variable method for robustness checks. The mediation
analysis uses stepwise regression and effect decomposition to quantify the indirect effect of smart agriculture
on output growth through technical efficiency.

In summary, the modeling framework consists of three main steps: First, the baseline CD production
function is established using traditional inputs (capital and labor). Second, the smart agriculture index is
integrated into the extended CD model to assess its direct contribution. Third, a mediation analysis is
performed by introducing technical efficiency as an intermediate variable. Finally, robustness tests are
conducted to validate the stability of the estimated effects. The definitions of all variables used in the
regression models are summarized in Table 2 for clarity.

Table 2
Definitions of Key Variables
Variable Symbol Definition
Agricultural output Y Logarithm of regional agricultural GDP
Capital input K Logarithm of fixed asset investment in agriculture
Labor input L Logarithm of number of rural laborers in agriculture
Smart agriculture SA Composite index calculated using entropy-AHP method
Land input Land Logarithm of cultivated land area
Policy environment Policy Dummy variable (1 = policy implemented, 0 = otherwise)
Technological progress TFP Technical efficiency index (used in mediation model)

RESULTS
Descriptive statistics and correlation analysis

The study first conducted descriptive statistics of the main variables to reflect the basic distribution
characteristics of smart agriculture, agricultural output, and related input factors in Sichuan and Shandong.
The statistical results are shown in Table 3.

Table 3
Descriptive statistics results
Variable Count Mean Standard deviation = Minimum 1st Median 3st Maximum
Y 22 59.21 7.82 44.69 55.58 58.16 64.25 72.63
SA4 22 0.580 0.096 0.394 0.506 0.588 0.631 0.814
K 22 545.85 45.520 461.85 51454  537.63 588.12 617.81
L 22 181.09 20.710 127.61 170.98 18179 194.14 211.29
Land 22 556.36 29.220 501.46 54346 55529  570.41 635.45

As shown in Table 3 the mean value of Y was 59.21, with a standard deviation of 7.82. The
minimum and maximum values were 44.69 and 72.63, respectively, indicating a certain degree of dispersion.
SA showed that most samples were already within the high-level range. Capital input exhibited relatively
large fluctuations, with a standard deviation of 45.52 and a maximum value as high as 617.81, suggesting
significant differences in fixed asset investment across regions. Regarding [, the interquartile range was
from 170.98 to 194.14, showing that the distribution of labor resources was relatively balanced and the overall
quantity was not low. The median value of Land was 555.29, with a maximum of 635.45 and a standard
deviation of 29.22, indicating a moderate range of variation in arable land area distribution. To further reveal
the direction and strength of the relationships between variables, the study conducted a correlation analysis of
the main variables. The results are presented in Table 4.
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Table 4
Correlation coefficients among main variables

/ Y SA K L Land Policy

Y 1.000 0.218 0.217 0.316 -0.010 -0.486
SA 0.218 1.000 -0.173 0.030 0.238 -0.086
K 0.217 -0.173 1.000 0.021 -0.001 0.123

L 0.316 0.030 0.021 1.000 -0.303 -0.159
Land -0.010 0.238 -0.001 -0.303 1.000 0.035
Policy -0.486 -0.086 0.123 -0.159 0.035 1.000

In Table 4, the correlation coefficient between Y and L was 0.316, indicating a moderate positive
correlation. The coefficient between Y and the SA4 index was 0.218, suggesting a positive relationship
between smart agriculture and agricultural output, though its elasticity was slightly lower than that of labor
input. Land and L showed a weak negative correlation, indicating that the expansion of arable land did
not significantly boost output during the sample period. Notably, the correlation coefficient between the
Policy variable and agricultural output was -0.486, indicating a significant negative correlation.

Regression analysis and interpretation of main results

Based on the analysis of basic data characteristics and correlations, the study employed a panel data
model to examine the impact of smart agriculture and traditional input factors on agricultural output. The
regression results and significance tests are shown in Table 5.

Table 5
Regression results and significance tests

Variable Coefficient Standard error t-value p-value
InK 0.280 0.050 5.600 0.0003
InL 0.170 0.070 2.428 0.0228
In S4 0.420 0.060 7.000 0.0000
In Land 0.150 0.040 3.750 0.0012
Policy 0.080 0.030 2.667 0.0154

In Table 5, the regression coefficient of InS4 was 0.420, with a t-value of 7.000 and a p-value less
than 0.0001, indicating that smart agriculture had a significant and stable positive effect on agricultural output.
Its output elasticity surpassed that of all traditional input factors, making it a key driver of current agricultural
economic growth. The coefficients and p-values of InK also suggested that fixed assets remained a core
resource for agricultural development. Labor input had a relatively small but still notable marginal contribution.
The coefficient of InLand was 0.150, with a p-value of 0.0012, indicating a significant positive effect of
arable land on output improvement. To intuitively present the confidence intervals of the regression
coefficients, model fit, and error distribution, the study produced the results shown in Fig. 2.
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(a) 95% confidence intervals for regression coefficients (b) Histogram of regression residuals

Fig. 2 - Model estimation accuracy and error distribution (Source from: author self-drawn)
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In Fig. 2(a), the point estimate of InS was the highest, at 0.42, indicating a strong and stable
positive effect on agricultural output. The confidence intervals of InZ and InLand were slightly wider but
remained within the positive range, fluctuating around 0.27 and 0.15, respectively. Policy had the lowest
estimate, at 0.08, and its confidence interval was close to the zero axis. In Fig. 2(b), the residuals displayed
an approximate normal distribution, with the peak concentrated around 0 and the highest frequency nearing
500. This indicated that the prediction errors of most observations were small and that the regression model
had a good fit. The residual distribution was symmetrical with no significant skewness. The left tail extended
to approximately -2, and the right tail to about 2, with few extreme residuals. No obvious heavy-tailed or
skewed patterns were observed, supporting the basic assumption of normality in the error term.

Heterogeneity analysis

The study used regression slope plots to analyze regional differences in economic growth driven by
smart agriculture. It also illustrated the evolution of its effects over time by visually comparing the marginal
effects on agricultural output across different regions. It also examined the elasticity changes from 2012 to
2022. The results are shown in Fig. 3.

<
o 04 « 0.5
% s}
= 0.3 E
g 3
% 0.2 5 04
= o
&h o
2 o z
2
0.0 803 — T T T T T
Shandong Sichuan m 2012 2014 2016 2018 2020 2022
Province

Year

(a) Regional regression slopes of Smart (b) Changes in smart agriculture elasticity from 2012 to 2022

agriculture development on agricultural output

Fig. 3 - Regional regression slopes and changes in smart agriculture elasticity (Source from: author self-drawn)

As shown in Fig. 3(a), the regression coefficient for Shandong was slightly higher than that for
Sichuan, at 0.45 and 0.38, respectively. This indicated that with each one-unit increase in the smart
agriculture index, agricultural output in Shandong grew at a slightly higher rate than in Sichuan. As shown in
Fig. 3(b), the elasticity coefficient showed a steady upward trend overall. It started at 0.31 in 2012, exceeded
0.40 in 2017, and peaked at 0.52 in 2021, marking the highest point over the decade. It then slightly declined
to 0.49 in 2022. However, the overall elasticity remained at a relatively high level.

Mediation mechanism and robustness analysis
To investigate the transmission mechanism of smart agriculture, the study applied a mediation effect
model and analyzed the trends in technical efficiency from 2012 to 2022. The results are presented in Fig. 4.
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Fig. 4 - Trends in technical efficiency from 2012 to 2022 (Source from: author self-drawn)

As shown in Fig. 4, the initial value of technical efficiency was only 0.59 in 2012. It then increased to
0.68 by 2014. From 2016 to 2018, it remained stable at 0.73. Starting in 2019, efficiency began to rise
significantly again, surpassing 0.82 in 2020 and reaching 0.89 in 2022. The regression results under
alternative variable specifications are shown in Fig. 5.
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Fig. 5 - Robustness and multicollinearity sensitivity tests (Source from: author self-drawn)

In Fig. 5(a), the coefficient of the core variable under the baseline model was 0.42. After replacing
variables, the coefficient became 0.39. The difference from the baseline was only 0.03. As shown in Fig. 5(b),
most variables were highly correlated. The correlation coefficient between K and L reached 0.96, and that
between K and Policy was 0.88, both of which were close to perfect correlation, suggesting a serious
multicollinearity issue between these variables. In comparison, the Land variable showed relatively low
correlation with other factors, indicating a more independent structure. Notably, the correlation coefficient
between S4 and Policy was 0.75, suggesting that policy support had a strong positive influence on the
development of smart agriculture.

DISCUSSION

This study provides robust empirical evidence on the impact of smart agriculture on agricultural
economic growth based on an extended Cobb-Douglas production framework. The main findings reveal that
smart agriculture exhibits the highest elasticity coefficient (0.42) among all input variables, outperforming
capital (0.28) and labor (0.17). This confirms the growing dominance of digital agricultural inputs in enhancing
productivity, and aligns with the global transformation toward technologically integrated agriculture. A notable
insight from the regression analysis is the regional heterogeneity in the marginal effects of smart agriculture.
Sichuan Province—despite having a lower average smart agriculture index (mean = 0.548)—shows a higher
elasticity (0.45) than Shandong Province (0.37). This supports the “technology-gap” theory proposed by
Fujiwara and Matsuyama (2024), which suggests that underdeveloped regions often experience stronger
marginal gains when adopting frontier technologies. It also aligns with Li and Ito’s (2024) research on rural
Gansu, which emphasizes the role of agricultural cooperatives in enhancing technical efficiency through
smart agricultural inputs.

The temporal dynamics further highlight the progressive role of smart agriculture. The elasticity of smart
agriculture rose from 0.31 in 2012 to a peak of 0.52 in 2021. It then slightly declined in 2022. Simultaneously,
the technical efficiency index improved steadily, from 0.59 to 0.89. These trends reflect a staged development
process. First, there is initial technology diffusion and infrastructure buildup. This is followed by systemic
efficiency gains. This is consistent with L et al. (2023), who observed similar trends in large-scale Japanese
rice farming, noting an early plateau before a second wave of gains from system-level restructuring. The
mediation analysis confirms that 26% of the total effect of smart agriculture is transmitted through
technological progress, reinforcing its role not just as a production input but also as a channel for productivity
enhancement. This indirect effect is especially strong in Sichuan, indicating that regions with greater
absorption capacity for innovation benefit more from smart technology deployment.

However, the relatively lower elasticity observed in Shandong may be attributed to behavioral or
institutional frictions. Harmak and El's study on Morocco highlights that low farmer acceptance is a key
constraint in technology adoption. Similarly, Li et al. (2023) found that policy incentives were not always
aligned with farmer behavior. This misalignment could limit the return on investment in digital systems. These
constraints may help explain diminishing marginal effects in Shandong. Nguyen et al. (2024) further
emphasize that the success of smart agriculture depends on more than just technology provision—it also
hinges on social influence, perceived performance, and organizational support. Their study on rice farmers in
Vietnam demonstrates that cooperatives and leading enterprises function as key intermediaries in the
diffusion process, which is especially relevant in contexts where individual farmers lack digital literacy or
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access to technical resources. Statistical diagnostics support the reliability of these findings. The model
residuals exhibit near-normal distribution with low skewness, indicating that the assumptions of the regression
framework hold. Additionally, capital input shows high variability across provinces, suggesting uneven
investment behavior. The weak negative correlation between land and labor inputs implies that simple land
expansion does not automatically translate into higher output, likely due to quality constraints or inefficient
usage.

Despite these strengths, this study is not without limitations. First, the dataset includes only two
provinces, limiting the generalizability of the findings. Second, the model does not account for dynamic or
lagged effects, which may be important in capturing long-term technology adoption. Third, the lack of
micro-level behavioral data prevents exploration of gendered responses, household-level decision-making, or
social learning mechanisms.

Overall, the evidence confirms that smart agriculture is a pivotal driver of modern agricultural
transformation, particularly in regions with low initial technological endowments. Its successful implementation,
however, requires a coordinated strategy. This strategy should combine infrastructure investment, institutional
adaptation, cooperative governance, and capacity building to fully unleash its potential.

CONCLUSIONS

This study empirically analyzed the impact of smart agriculture on agricultural economic growth based
on the extended Cobb-Douglas production function model. It also examined the underlying mechanism. The
results showed that the development level of smart agriculture significantly increased agricultural output, with
an elasticity coefficient of 0.42—substantially higher than that of capital and labor. These effects also varied
across provinces. In particular, the standard deviation of the smart agriculture index in Sichuan (0.15) was
nearly twice that of Shandong (0.08), indicating a larger development gap. However, Sichuan exhibited a
higher elasticity coefficient, suggesting that smart agriculture has stronger marginal productivity in less
developed regions. The mediation analysis further revealed that improvements in technical efficiency
accounted for 26% of the total effect, highlighting the indirect role of technology diffusion in enhancing output.
Residual diagnostics confirmed that the model assumptions were satisfied, with residuals approximately
normally distributed (p > 0.1), thereby supporting the validity of the estimation results. These findings imply
that smart agriculture, when supported by effective policies and infrastructure investment, can serve as a
strategic lever for bridging regional development gaps. Policymakers should prioritize tailored technological
deployment, enhance cooperative governance, and invest in rural human capital to maximize smart
agriculture’s potential in driving sustainable agricultural modernization. Despite its contributions, this study
has certain limitations, including restricted data access, static model assumptions, and limited regional
coverage. Future research could incorporate time-varying coefficient models, expand geographic scope, and
integrate high-frequency and behavioral data to better capture dynamic patterns and provide more targeted
support for policy and regional strategy design.

ACKNOWLEDGEMENT

The research is supported by the 2023 General Project of Philosophy and Social Science Research in
Jiangsu Province Universities "Research on Enhancing the Competitiveness of Agricultural Product Regional
Brands through Live Streaming E-commerce" (2023SJYB0976).

REFERENCES

[11  Afouna, N.A., Ali, M.K.IM. (2024). The Impact of Heterogeneity in High-Ranking Variables Using
Precision Farming. Malaysian Journal of Fundamental and Applied Sciences, Vol. 20, pp. 1344-1362.

[21 Ahmed, A, Parveen, |., Abdullah, S., Ahmad, I., Alturki, N., Jamel, L. (2024). Optimized data fusion with
scheduled rest periods for enhanced smart agriculture via blockchain integration. /IEEE Access, Vol. 12,
pp. 15171-15193.

[8] Al-Adamat, A., Alserhan, H., Al Shbail, M. (2024). Do Board Internationalization, Political Relations and
Gender Diversity Determine the Corporate Environmental Reporting Practices in Jordan: A
Random-Effect Test. ELIT-Economic Laboratory for Transition Research, Vol. 20, pp. 165-175.

[4] Belay, A., Mirzabaev, A., Recha, J.W., Oludhe, C., Osano, P.M., Berhane, Z., Solomon, D. (2024).
Does climate-smart agriculture improve household income and food security? Evidence from Southern
Ethiopia. Environment, Development and Sustainability, Vol. 26, pp. 16711-16738.

202



Vol. 77, No. 3/ 2025 INMATEH - Agricultural Engineering

[5] Ekpa, D., Tiri, G.D., Manman, M. (2023). Evaluation of climate smart indicators influencing agricultural
practices on sorghum enterprise in Katsina and Sokoto states. FUDMA Journal of Agriculture and
Agricultural Technology, Vol. 9, pp. 129-136.

[6] Fujiwara, I.,, Matsuyama, K. (2024). A Technology-Gap Model of “Premature” Deindustrialization.
American Economic Review, Vol. 114, pp. 3714-3745.

[71 Li, D., Nanseki, T., Chomei, Y., Kuang, J. (2023). A review of smart agriculture and production practices
in Japanese large-scale rice farming. Journal of the Science of Food and Agriculture, Vol. 103, pp.
1609-1620.

[8] Li, X., Ito, J. (2024). Multiple roles of agricultural cooperatives in improving farm technical efficiency: A
case study of rural Gansu, China. Agribusiness, Vol. 41, pp. 424-444.

[9] Lopez Santiago, M.A., Zavala Beltran, J.l., Valdivia Alcala, R., Montiel Baralla, B.M. (2023). Funcién
Cobb-Douglas de la produccién de miel en Aguascalientes, México. Revista mexicana de ciencias
pecuarias, Vol. 14, pp. 735-744.

[10] Morkunas, M., Volkov, A. (2023). The progress of the development of a climate-smart agriculture in
Europe: Is there cohesion in the European Union? Environmental Management, Vol. 71, pp.
1111-1127.

[11] Muhammad, S., Hanan, F., Shah, S.A., Yuan, A., Khan, W., Sun, H. (2023). Industrial optimization
using three-factor Cobb-Douglas production function of non-linear programming with application. AIMS
Mathematics, Vol. 8, pp. 29956-29974.

[12] Nguyen, L.L.H., Khuu, D.T., Halibas, A., Nguyen, T.Q. (2024). Factors that influence the intention of
smallholder rice farmers to adopt cleaner production practices: An empirical study of precision
agriculture adoption. Evaluation Review, Vol. 48, pp. 692-735.

[13] Opuala-Charles, S., Franklin, A.O., Orji, J.O. (2025). Sectoral Big Push Theory Test in Nigeria: A
Cobb-Douglas Model. GAS Journal of Arts Humanities and Social Sciences (GASJAHSS), Vol. 3, pp.
80-99.

[14] Priyatna, A., Supriatna, H., Taufik, T.T., Faqih, A., Hidayat, Y.R. (2025). Technical Efficiency of
Farming Business to Optimize Rice Production (Oryza Sativa L.): The Case in Pajawanlor Village,
Ciawigebang District, Kuningan Regency. Journal of World Science, Vol. 4, pp. 214-227.

[15] Santalucia, S., Sibhatu, K.T. (2024). Nourishing the farms, nourishing the plates: Association of
climate-smart agricultural practices with household dietary diversity and food security in smallholders.
Agribusiness, Vol. 40, pp. 513-533.

[16] Srinivasan, K., Yadav, V.K. (2024). An empirical investigation of barriers to the adoption of smart
technologies integrated urban agriculture systems. Journal of Decision Systems, Vol. 33, pp. 878-912.

[17] Tabe-Ojong, M.P.J., Kedinga, M.E., Gebrekidan, B.H. (2024). Behavioural factors matter for the
adoption of climate-smart agriculture. Scientific Reports, Vol. 14, p. 798.

[18] Ucan, O., Ozturk, I., Turgut, E. (2024). Determinants of ecological footprint in BRICS countries: a panel
data analysis. Environment, Development and Sustainability, Vol. 26, pp. 26839-26852.

[19] Uthaman, V.S., Raj, M.A. (2024). A Study on Adoption of loT based Smart Agricultural Practices in
Kerala Using Analytic Hierarchy Process. Asian Journal of Applied Science and Technology (AJAST),
Vol. 8, pp. 183-193.

[20] Zanré, K.P., Combary, O.S. (2024). The heterogeneous effects of climate variability on cotton farming
productivity in Burkina Faso. Environment, Development and Sustainability, Vol. 26, pp. 12707-12735.

203



