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ABSTRACT 

This paper uses panel data from Sichuan Province and Shandong Province from 2012 to 2022 to build an 

evaluation index system for the development of smart agriculture. It systematically assesses the impact and 

internal mechanism of smart agriculture on regional agricultural economic growth. This assessment is based 

on the Cobb-Douglas production function and panel regression methods. The regression results show that for 

each unit increase in the level of smart agriculture development, the elasticity contribution to agricultural 

economic output is 0.42, which is significantly higher than that of capital (0.28) and labor (0.17). Provincial 

regressions reveal significant differences, with Sichuan showing an elasticity coefficient of 0.45 and 

Shandong 0.37. Smart agriculture plays a significant and positive role in promoting agricultural economic 

growth. Its effect surpasses that of traditional input factors. Moreover, the effect of smart agriculture varies 

across regions. The analysis of mediation effects further shows the role of technological progress. It serves as 

a key pathway through which smart agriculture influences agricultural economic growth. Robustness checks 

and extended analyses confirm the reliability of these findings. Finally, the paper puts forward policy 

recommendations focusing on strengthening technological innovation, improving infrastructure, and 

cultivating talent. 

 

摘要 

本文采用 2012 - 2022 年四川省和山东省的面板数据，构建智慧农业发展的评价指标体系。系统评估了智慧农

业对区域农业经济增长的影响及其内在机制。这种评估是基于柯布-道格拉斯生产函数和面板回归方法。回归结

果表明，智慧农业发展水平每提高一个单位，其对农业经济产出的弹性贡献为 0.42，显著高于资本（0.28）和

劳动力（0.17）。各省回归显示出显著差异，四川的弹性系数为 0.45，山东为 0.37。智慧农业对促进农业经济

增长具有重要而积极的作用。它的作用超过了传统的投入要素。此外，智能农业的效果因地区而异。对中介效

应的分析进一步显示了技术进步的作用。它是智慧农业影响农业经济增长的关键途径。稳健性检查和扩展分析

证实了这些发现的可靠性。最后，提出了加强技术创新、完善基础设施、培养人才的政策建议。 

 

INTRODUCTION 

Since the beginning of the 21st century, agricultural modernization has increasingly become a key 

strategy for enhancing agricultural competitiveness, ensuring food security, and promoting rural revitalization 

across countries. Smart agriculture integrates advanced technologies such as the Internet of Things, big data, 

and artificial intelligence. It enables intelligent, precise, and visualized agricultural production. It has become a 

major driving force in the transformation from traditional to modern agriculture (Belay et al., 2024; Srinivasan 

and Yadav, 2024). Most current studies on the impact of smart agriculture on agricultural economic growth 

focus on policy advocacy and technical pathways. However, they often lack solid empirical evidence at the 

regional level. This is especially true for quantifying economic contributions, clarifying underlying mechanisms, 

and identifying regional heterogeneity. In agricultural economic research, the Cobb-Douglas (CD) production 

function is widely used due to its simplicity and the strong interpretability of its elasticity parameters. It is 

commonly applied to identify influencing factors and analyze the contribution of different inputs (Tabe-Ojong 

et al., 2024).  
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For example, Priyatna et al. (2025) adopted a stochastic frontier version of the CD production function 

combined with maximum likelihood estimation to analyze data from 35 rice farmers. Their results show an 

average technical efficiency of 75%, suggesting that optimized resource allocation could increase output by 

25%. Land, seeds, fertilizer, labor, and farming experience were identified as the main influencing factors. 

Similarly, Opuala-Charles et al. (2025) examined the applicability of the "sectoral big push" theory in Nigeria 

from 1985 to 2023. They proposed an empirical model based on the CD production function and an 

autoregressive distributed lag model. They analyzed government investment, income inequality, labor 

utilization, and technology across the service, agricultural, and industrial sectors. The results show that 

government investment significantly promotes economic growth in all three sectors, with the strongest 

response in services. However, most existing empirical studies remain at the macro level, leaving gaps in 

understanding regional differences, mechanisms of influence, and the construction of evaluation indicators. In 

response, this paper selects Sichuan and Shandong—two provinces with significantly different development 

foundations—as the focus of comparative analysis. Based on an extended CD production function model, it 

constructs a regional panel regression system. The model includes a composite input structure. This structure 

incorporates a systematically developed smart agriculture development index alongside traditional factors 

such as land, capital, and labor. The analysis introduces interaction terms and mediating variables to capture 

the indirect effects and regional characteristics of smart agriculture. The research aims to answer three main 

questions: What is the actual impact of smart agriculture on agricultural economic growth? What mechanism 

does smart agriculture follow in promoting economic development? And how does this effect vary across 

different regions? Therefore, this research aims to address the following research objectives: (1) 

Quantitatively assess the elasticity contribution of smart agriculture to agricultural economic growth in 

selected regions; (2) Identify the mediating role of technological progress in the influence path of smart 

agriculture; (3) Explore the regional heterogeneity in the effects of smart agriculture and derive differentiated 

policy implications. The innovation of this paper lies in building a comprehensive evaluation index system for 

smart agriculture and conducting a comparative analysis of regional differences. 

 

MATERIALS AND METHODS 

Theoretical foundation and research hypotheses 

Theoretical analysis of the CD function and smart agriculture 

The CD production function, first proposed by Charles Cobb and Paul Douglas in 1928, effectively 

measures the elasticity contribution of capital, labor, and smart agriculture to agricultural output. It is widely 

applied in empirical studies on agricultural economic growth and production efficiency (Muhammad et al., 

2023; López Santiago et al., 2023). The general form is shown in Equation (1). 

Y AK L =                                       (1) 

In Equation (1), Y  represents output. K  and L  refer to capital input and labor input, respectively. 

A  is the technological progress parameter, which captures all other factors affecting output beyond capital 

and labor.   and   represent the output elasticities of capital and labor. If 1 + = , it indicates constant 

returns to scale. If 1 +  , it indicates increasing returns to scale. If 1 +  , it indicates decreasing 

returns to scale. 

 

Mechanisms and input structure through which smart agriculture affects the agricultural economy 

Smart agriculture promotes improvements in production efficiency and optimization of resource 

allocation. It also upgrades the labor structure, enhances capital utilization efficiency, and refines industrial 

chains. These are concrete manifestations of endogenous technological progress, as emphasized by the new 

economic growth theory (Ahmed et al., 2024). The actual impact depends on regional infrastructure, talent 

availability, and the level of industrial promotion. 

 

Formulation of research hypotheses 

Based on the theoretical analysis above and the mechanisms through which smart agriculture affects 

agricultural economic growth, this study puts forward the following three research hypotheses: H1: The 

development level of smart agriculture has a significant positive effect on agricultural economic growth. After 

controlling for traditional input factors such as capital, labor, and land, improvements in smart agriculture can 

effectively increase agricultural output. H2: Compared with traditional input factors, smart agriculture plays a 

more significant role in promoting agricultural economic growth, indicating that it has become a key driver for 
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the high-quality development of modern agriculture. H3: The impact of smart agriculture on agricultural 

economic growth varies across regions. Regions with different economic foundations and development 

stages show clear differences in marginal effects and operating mechanisms. This study constructs a 

multidimensional evaluation index system and a regression model. It conducts a systematic empirical test of 

the above hypotheses. The goal is to reveal the actual path and internal mechanisms through which smart 

agriculture promotes agricultural economic growth under different regional conditions. 

 

Data and variable design 

Data sources and processing 

To provide a clearer understanding of the geographical features of the study areas, this study briefly 

analyzes the spatial location of Sichuan Province and Shandong Province. Their geographic distribution is 

shown in Figure 1. 

Sichuan

Shandong

 

Fig. 1 - Schematic diagram of the geographical location of Sichuan Province and Shandong Province  
(Source from: https://openmaptiles.org/languages/zh/#0.6/0/0) 

 

As shown in Fig. 1, Sichuan Province is located in the southwest inland region of China. Its terrain 

mainly consists of basins and hills, with a mild climate and synchronized rainfall and heat, which makes it 

suitable for the cultivation of various crops. Its agriculture focuses on rice, rapeseed, and pig farming. In 

recent years, smart agriculture has been preliminarily promoted in areas such as the Chengdu Plain. 

Shandong Province, located along the eastern coast of China, features flat terrain and concentrated arable 

land. It is one of the country's major production bases for wheat, corn, peanuts, and fruits and vegetables. 

With a higher level of mechanization and informatization in agriculture, Shandong has a more solid foundation 

for the development of smart agriculture. The two provinces have different topography and resource 

endowments. As a result, their agricultural economic structures show distinct characteristics. These 

differences also provide a practical basis for region-specific development paths of smart agriculture. 

 

Index system construction and evaluation method for smart agriculture 

Based on the core concept of smart agriculture and actual conditions across different regions, this 

study builds an evaluation index system to measure the development level of smart agriculture in Sichuan 

and Shandong provinces from multiple dimensions. The smart agriculture development index considers 

several dimensions. These include IoT coverage, big data application, automation rate, and equipment 

penetration rate. The entropy method and Analytic Hierarchy Process (AHP) are used to assign weights. A 

linear weighted sum method is applied to calculate the composite score (Uthaman and Raj 2024; Morkunas 

and Volkov, 2023).  

The specific calculation is shown in Equation (2). 

1

n

i i

i

SAI w X
=

=                                      (2) 

In Equation (2), SAI  represents the comprehensive smart agriculture development index. iw  

denotes the weight of the i -th indicator, and iX  denotes the standardized value of the corresponding 

indicator. 

 



Vol. 77, No. 3/ 2025  INMATEH - Agricultural Engineering 
 

196 

Variable selection and explanation 

Evaluating smart agriculture requires reflecting the level of technology application, infrastructure 

development, talent support, and industrial promotion. Based on the actual conditions of smart agriculture in 

China, this study establishes a smart agriculture development evaluation index system, which includes both 

primary and secondary indicators. The specific indicators are shown in Table 1. 

Table 1  

Indicators for the development level of smart agriculture 

First-level indicator Second-level indicator Weight 

Technological foundation 

Internet of Things coverage rate 0.12 

Big data application intensity 0.10 

Automation control rate 0.10 

Infrastructure development 
Penetration rate of smart agricultural equipment 0.12 

Rural broadband access rate 0.10 

Talent support 
Proportion of smart agricultural professionals 0.10 

Coverage rate of smart agricultural training 0.08 

Industrial promotion 

Number of smart agricultural demonstration parks 0.10 

Proportion of area under smart agricultural use 0.10 

Number of smart agricultural enterprises 0.08 

 

As shown in Table 1, in the dimension of technology infrastructure, both IoT coverage and automation 

control rate carry a weight of 0.10 or higher. The weight for the strength of big data application is 0.10, 

highlighting the importance of data-driven agricultural production. In the talent support dimension, the weight 

of smart agriculture professionals is 0.10, while the training coverage rate is slightly lower at 0.08, reflecting a 

policy focus on core human resources and a gap in training coverage. In the dimension of industrial promotion, 

the number of demonstration parks and the proportion of smart agriculture application area both carry weights 

of 0.10, emphasizing a balance between the breadth and depth of application. The number of smart 

agriculture enterprises is assigned a weight of 0.08, slightly lower, possibly indicating early-stage 

development or statistical difficulty in some regions. 

 

Model construction and estimation methods 

Basic CD model and extended specification 

In practice, a log-linear transformation is usually applied to the model to facilitate regression analysis. 

The expression is shown in Equation (3). 

ln ln ln lnY A K L  = + + +                               (3) 

The study introduces the smart agriculture variable into the model in Equation (3). This allows further 

exploration of its effect on agricultural economic growth. Based on the classic CD production function, this 

study incorporates the smart agriculture development level into an extended production function model, as 

shown in Equation (4). 

it

it it it it itY A K L SA e
  =                                  (4) 

In Equation (4), itY  represents the agricultural economic output of region i  in year t . itA  denotes 

the rate of technological progress. itSA  represents the development level of smart agriculture, and   is the 

output elasticity of smart agriculture. it  is the random error term, which follows a normal distribution. To 

facilitate linear regression analysis, a logarithmic transformation is applied to the production function, yielding 

the log-linear model shown in Equation (5). 

ln ln ln ln lnit it it it itY A K L SA   = + + + +                        (5) 

In Equation (5), it  represents the random error value. This study further introduces control 

variables to account for possible differences in policy environment and land resource scale in actual 

agricultural production. These variables include land area and policy environment. The final model is shown in 

Equation (6). 
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0 1 2ln ln ln ln lnit it it it it it itY K L SA Land Policy      = + + + + + +             (6) 

In Equation (6), 0  denotes the constant term. itLand  represents the scale of land input in region i 

in year t. itPolicy  is the dummy variable for the smart agriculture policy environment. 1  and 2  are the 

coefficients representing the effects of land area and policy environment, respectively. 

 

Empirical strategy and data analysis methods 

This study uses fixed effects panel regression, Variance Inflation Factor (VIF) test, 

heteroskedasticity-robust standard errors, instrumental variable method, and Pearson correlation to conduct 

regression analysis. The research uses panel data from Sichuan and Shandong provinces from 2012 to 2022, 

which vary across time and regions. Therefore, panel data analysis is appropriate (Ucan et al. 2024; 

Santalucia and Sibhatu, 2024). Specifically, the Fixed Effects (FE) model is selected to capture unobserved 

regional heterogeneity. The general form of the fixed effects model is shown in Equation (7). 

0 1 2ln ln ln ln lnit it it it it it i itY K L SA Land Policy       = + + + + + + +         (7) 

In Equation (7), i  represents regional fixed effects used to control for unobservable heterogeneity 

caused by historical, cultural, and economic development differences. To verify the appropriateness of using 

the FE model, the Hausman test is conducted. The null hypothesis is that the Random Effects (RE) model is 

consistent. If the null hypothesis is rejected at the 5% significance level, the FE model is considered more 

suitable (Al-Adamat et al., 2024). The formula for the Hausman test statistic is shown in Equation (8). 

1ˆ ˆ ˆ ˆ ˆ ˆ( ) '[ ( ) ( )] ( )FE RE FE RE FE REH Var Var     −= − − −                     (8) 

In Equation (8), ˆ
FE  and ˆ

RE  represent the parameter vectors estimated by the FE and RE models, 

respectively. ˆ( )Var   denotes the corresponding variance of the parameter estimates. To ensure the 

robustness of the empirical analysis, VIF test, endogeneity test, and heteroskedasticity test are further 

conducted (Afouna and Ali 2024; Ekpa et al., 2023). The VIF test examines multicollinearity among variables 

by calculating the variance inflation factor, as shown in Equation (9). 

2

1

1
j

j

VIF
R

=
−

                                     (9) 

In Equation (9), 
2

jR  represents the coefficient of determination when the j -th independent variable 

is regressed on all other independent variables. In general, a VIF value less than 10 indicates no serious 

multicollinearity. For the endogeneity test, this study uses the instrumental variable method, with the 

one-period lag of the smart agriculture development level as the instrument. The first-stage regression is 

shown in Equation (10). 

0 1 1ln lnit it it it itSA SA Controls v  −= + + + +                    (10) 

In Equation (10), the first-stage regression uses the instrumental variable to predict the smart 

agriculture variable. The second-stage regression substitutes the predicted value into the main equation, as 

shown in Equation (11). 

0 ,1 1 2ln ln ln ln lnit it it it it it i itY K L SA Land Policy       = + + + + + + +       (11) 

In Equation (11), ,1ln itSA  represents the predicted value from the first-stage regression. 

 

Mediation effect analysis and robustness testing methods 

This study introduces the technological progress variable as a mediating variable to explore the 

mechanism through which smart agriculture promotes agricultural economic growth. The three-step mediation 

test is then applied. The equations are shown in Equation (12). 

0 1

0 1

0 1 2

ln ln

ln

ln ln

it it it i it

it it it i it

it it it it i it

Y c c SA Controls

TFP a a SA Controls u

Y b b SA b TFP Controls

 



 

 = + + + +


= + + + +


= + + + + +







                 (12) 
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In Equation (12), TFP  is the technical efficiency index. The second step tests the impact of smart 

agriculture on technological progress. The third step examines the combined effect of smart agriculture and 

technological progress on agricultural output. In the heteroskedasticity robustness test, the White test is used 

to detect heteroskedasticity in the model, and the corrected standard errors are estimated using robust 

standard errors (Zanré and Combary 2024). To estimate the elasticity coefficients of each production factor in 

the CD production function, ordinary least squares regression is used to fit the log-linearized model, and 

heteroskedasticity-robust standard errors are used to reduce estimation bias. In addition, to address potential 

endogeneity, some models apply the instrumental variable method for robustness checks. The mediation 

analysis uses stepwise regression and effect decomposition to quantify the indirect effect of smart agriculture 

on output growth through technical efficiency. 

In summary, the modeling framework consists of three main steps: First, the baseline CD production 

function is established using traditional inputs (capital and labor). Second, the smart agriculture index is 

integrated into the extended CD model to assess its direct contribution. Third, a mediation analysis is 

performed by introducing technical efficiency as an intermediate variable. Finally, robustness tests are 

conducted to validate the stability of the estimated effects. The definitions of all variables used in the 

regression models are summarized in Table 2 for clarity. 

Table 2  

Definitions of Key Variables 

Variable Symbol Definition 

Agricultural output Y  Logarithm of regional agricultural GDP 

Capital input K  Logarithm of fixed asset investment in agriculture 

Labor input L  Logarithm of number of rural laborers in agriculture 

Smart agriculture SA  Composite index calculated using entropy-AHP method 

Land input Land  Logarithm of cultivated land area 

Policy environment Policy  
Dummy variable (1 = policy implemented, 0 = otherwise) 

Technological progress TFP  Technical efficiency index (used in mediation model) 

 

RESULTS 

Descriptive statistics and correlation analysis 

The study first conducted descriptive statistics of the main variables to reflect the basic distribution 

characteristics of smart agriculture, agricultural output, and related input factors in Sichuan and Shandong. 

The statistical results are shown in Table 3. 

Table 3  

Descriptive statistics results 

Variable Count Mean Standard deviation Minimum 1st Median 3st Maximum 

Y  22 59.21 7.82 44.69 55.58 58.16 64.25 72.63 

SA  22 0.580 0.096 0.394 0.506 0.588 0.631 0.814 

K  22 545.85 45.520 461.85 514.54 537.63 588.12 617.81 

L  22 181.09 20.710 127.61 170.98 181.79 194.14 211.29 

Land  22 556.36 29.220 501.46 543.46 555.29 570.41 635.45 

 

As shown in Table 3 the mean value of Y  was 59.21, with a standard deviation of 7.82. The 

minimum and maximum values were 44.69 and 72.63, respectively, indicating a certain degree of dispersion. 

SA  showed that most samples were already within the high-level range. Capital input exhibited relatively 

large fluctuations, with a standard deviation of 45.52 and a maximum value as high as 617.81, suggesting 

significant differences in fixed asset investment across regions. Regarding L , the interquartile range was 

from 170.98 to 194.14, showing that the distribution of labor resources was relatively balanced and the overall 

quantity was not low. The median value of Land  was 555.29, with a maximum of 635.45 and a standard 

deviation of 29.22, indicating a moderate range of variation in arable land area distribution. To further reveal 

the direction and strength of the relationships between variables, the study conducted a correlation analysis of 

the main variables. The results are presented in Table 4. 
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Table 4  

Correlation coefficients among main variables 

/ Y  SA  K  L  Land  Policy
 

Y  1.000 0.218 0.217 0.316 -0.010 -0.486 

SA  0.218 1.000 -0.173 0.030 0.238 -0.086 

K  0.217 -0.173 1.000 0.021 -0.001 0.123 

L  0.316 0.030 0.021 1.000 -0.303 -0.159 

Land  -0.010 0.238 -0.001 -0.303 1.000 0.035 

Policy
 -0.486 -0.086 0.123 -0.159 0.035 1.000 

 

In Table 4, the correlation coefficient between Y  and L  was 0.316, indicating a moderate positive 

correlation. The coefficient between Y  and the SA  index was 0.218, suggesting a positive relationship 

between smart agriculture and agricultural output, though its elasticity was slightly lower than that of labor 

input. Land  and L  showed a weak negative correlation, indicating that the expansion of arable land did 

not significantly boost output during the sample period. Notably, the correlation coefficient between the 

Policy  variable and agricultural output was -0.486, indicating a significant negative correlation. 

Regression analysis and interpretation of main results 

Based on the analysis of basic data characteristics and correlations, the study employed a panel data 

model to examine the impact of smart agriculture and traditional input factors on agricultural output. The 

regression results and significance tests are shown in Table 5. 

Table 5  

Regression results and significance tests 

Variable Coefficient Standard error t-value p-value 

ln K  0.280 0.050 5.600 0.0003 

ln L  0.170 0.070 2.428 0.0228 

ln SA  0.420 0.060 7.000 0.0000 

ln Land  0.150 0.040 3.750 0.0012 

Policy
 

0.080 0.030 2.667 0.0154 

 

In Table 5, the regression coefficient of ln SA  was 0.420, with a t-value of 7.000 and a p-value less 

than 0.0001, indicating that smart agriculture had a significant and stable positive effect on agricultural output. 

Its output elasticity surpassed that of all traditional input factors, making it a key driver of current agricultural 

economic growth. The coefficients and p-values of ln K  also suggested that fixed assets remained a core 

resource for agricultural development. Labor input had a relatively small but still notable marginal contribution. 

The coefficient of ln Land  was 0.150, with a p-value of 0.0012, indicating a significant positive effect of 

arable land on output improvement. To intuitively present the confidence intervals of the regression 

coefficients, model fit, and error distribution, the study produced the results shown in Fig. 2. 
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Fig. 2 - Model estimation accuracy and error distribution (Source from: author self-drawn) 
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In Fig. 2(a), the point estimate of ln S  was the highest, at 0.42, indicating a strong and stable 

positive effect on agricultural output. The confidence intervals of ln L  and ln Land  were slightly wider but 

remained within the positive range, fluctuating around 0.27 and 0.15, respectively. Policy  had the lowest 

estimate, at 0.08, and its confidence interval was close to the zero axis. In Fig. 2(b), the residuals displayed 

an approximate normal distribution, with the peak concentrated around 0 and the highest frequency nearing 

500. This indicated that the prediction errors of most observations were small and that the regression model 

had a good fit. The residual distribution was symmetrical with no significant skewness. The left tail extended 

to approximately -2, and the right tail to about 2, with few extreme residuals. No obvious heavy-tailed or 

skewed patterns were observed, supporting the basic assumption of normality in the error term. 
 

Heterogeneity analysis 

The study used regression slope plots to analyze regional differences in economic growth driven by 

smart agriculture. It also illustrated the evolution of its effects over time by visually comparing the marginal 

effects on agricultural output across different regions. It also examined the elasticity changes from 2012 to 

2022. The results are shown in Fig. 3. 
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Fig. 3 - Regional regression slopes and changes in smart agriculture elasticity (Source from: author self-drawn) 

 

As shown in Fig. 3(a), the regression coefficient for Shandong was slightly higher than that for 

Sichuan, at 0.45 and 0.38, respectively. This indicated that with each one-unit increase in the smart 

agriculture index, agricultural output in Shandong grew at a slightly higher rate than in Sichuan. As shown in 

Fig. 3(b), the elasticity coefficient showed a steady upward trend overall. It started at 0.31 in 2012, exceeded 

0.40 in 2017, and peaked at 0.52 in 2021, marking the highest point over the decade. It then slightly declined 

to 0.49 in 2022. However, the overall elasticity remained at a relatively high level. 

 

Mediation mechanism and robustness analysis 

To investigate the transmission mechanism of smart agriculture, the study applied a mediation effect 

model and analyzed the trends in technical efficiency from 2012 to 2022. The results are presented in Fig. 4. 
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Fig. 4 - Trends in technical efficiency from 2012 to 2022 (Source from: author self-drawn) 

 

As shown in Fig. 4, the initial value of technical efficiency was only 0.59 in 2012. It then increased to 

0.68 by 2014. From 2016 to 2018, it remained stable at 0.73. Starting in 2019, efficiency began to rise 

significantly again, surpassing 0.82 in 2020 and reaching 0.89 in 2022. The regression results under 

alternative variable specifications are shown in Fig. 5. 
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Fig. 5 - Robustness and multicollinearity sensitivity tests (Source from: author self-drawn) 

 

In Fig. 5(a), the coefficient of the core variable under the baseline model was 0.42. After replacing 

variables, the coefficient became 0.39. The difference from the baseline was only 0.03. As shown in Fig. 5(b), 

most variables were highly correlated. The correlation coefficient between K  and L  reached 0.96, and that 

between K  and Policy was 0.88, both of which were close to perfect correlation, suggesting a serious 

multicollinearity issue between these variables. In comparison, the Land variable showed relatively low 

correlation with other factors, indicating a more independent structure. Notably, the correlation coefficient 

between SA and Policy was 0.75, suggesting that policy support had a strong positive influence on the 

development of smart agriculture.  

 

DISCUSSION 

This study provides robust empirical evidence on the impact of smart agriculture on agricultural 

economic growth based on an extended Cobb-Douglas production framework. The main findings reveal that 

smart agriculture exhibits the highest elasticity coefficient (0.42) among all input variables, outperforming 

capital (0.28) and labor (0.17). This confirms the growing dominance of digital agricultural inputs in enhancing 

productivity, and aligns with the global transformation toward technologically integrated agriculture. A notable 

insight from the regression analysis is the regional heterogeneity in the marginal effects of smart agriculture. 

Sichuan Province—despite having a lower average smart agriculture index (mean = 0.548)—shows a higher 

elasticity (0.45) than Shandong Province (0.37). This supports the “technology-gap” theory proposed by 

Fujiwara and Matsuyama (2024), which suggests that underdeveloped regions often experience stronger 

marginal gains when adopting frontier technologies. It also aligns with Li and Ito’s (2024) research on rural 

Gansu, which emphasizes the role of agricultural cooperatives in enhancing technical efficiency through 

smart agricultural inputs. 

The temporal dynamics further highlight the progressive role of smart agriculture. The elasticity of smart 

agriculture rose from 0.31 in 2012 to a peak of 0.52 in 2021. It then slightly declined in 2022. Simultaneously, 

the technical efficiency index improved steadily, from 0.59 to 0.89. These trends reflect a staged development 

process. First, there is initial technology diffusion and infrastructure buildup. This is followed by systemic 

efficiency gains. This is consistent with Li et al. (2023), who observed similar trends in large-scale Japanese 

rice farming, noting an early plateau before a second wave of gains from system-level restructuring. The 

mediation analysis confirms that 26% of the total effect of smart agriculture is transmitted through 

technological progress, reinforcing its role not just as a production input but also as a channel for productivity 

enhancement. This indirect effect is especially strong in Sichuan, indicating that regions with greater 

absorption capacity for innovation benefit more from smart technology deployment. 

However, the relatively lower elasticity observed in Shandong may be attributed to behavioral or 

institutional frictions. Harmak and El’s study on Morocco highlights that low farmer acceptance is a key 

constraint in technology adoption. Similarly, Li et al. (2023) found that policy incentives were not always 

aligned with farmer behavior. This misalignment could limit the return on investment in digital systems. These 

constraints may help explain diminishing marginal effects in Shandong. Nguyen et al. (2024) further 

emphasize that the success of smart agriculture depends on more than just technology provision—it also 

hinges on social influence, perceived performance, and organizational support. Their study on rice farmers in 

Vietnam demonstrates that cooperatives and leading enterprises function as key intermediaries in the 

diffusion process, which is especially relevant in contexts where individual farmers lack digital literacy or 
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access to technical resources. Statistical diagnostics support the reliability of these findings. The model 

residuals exhibit near-normal distribution with low skewness, indicating that the assumptions of the regression 

framework hold. Additionally, capital input shows high variability across provinces, suggesting uneven 

investment behavior. The weak negative correlation between land and labor inputs implies that simple land 

expansion does not automatically translate into higher output, likely due to quality constraints or inefficient 

usage. 

Despite these strengths, this study is not without limitations. First, the dataset includes only two 

provinces, limiting the generalizability of the findings. Second, the model does not account for dynamic or 

lagged effects, which may be important in capturing long-term technology adoption. Third, the lack of 

micro-level behavioral data prevents exploration of gendered responses, household-level decision-making, or 

social learning mechanisms. 

Overall, the evidence confirms that smart agriculture is a pivotal driver of modern agricultural 

transformation, particularly in regions with low initial technological endowments. Its successful implementation, 

however, requires a coordinated strategy. This strategy should combine infrastructure investment, institutional 

adaptation, cooperative governance, and capacity building to fully unleash its potential. 

 

CONCLUSIONS 

This study empirically analyzed the impact of smart agriculture on agricultural economic growth based 

on the extended Cobb-Douglas production function model. It also examined the underlying mechanism. The 

results showed that the development level of smart agriculture significantly increased agricultural output, with 

an elasticity coefficient of 0.42—substantially higher than that of capital and labor. These effects also varied 

across provinces. In particular, the standard deviation of the smart agriculture index in Sichuan (0.15) was 

nearly twice that of Shandong (0.08), indicating a larger development gap. However, Sichuan exhibited a 

higher elasticity coefficient, suggesting that smart agriculture has stronger marginal productivity in less 

developed regions. The mediation analysis further revealed that improvements in technical efficiency 

accounted for 26% of the total effect, highlighting the indirect role of technology diffusion in enhancing output. 

Residual diagnostics confirmed that the model assumptions were satisfied, with residuals approximately 

normally distributed (p > 0.1), thereby supporting the validity of the estimation results. These findings imply 

that smart agriculture, when supported by effective policies and infrastructure investment, can serve as a 

strategic lever for bridging regional development gaps. Policymakers should prioritize tailored technological 

deployment, enhance cooperative governance, and invest in rural human capital to maximize smart 

agriculture’s potential in driving sustainable agricultural modernization. Despite its contributions, this study 

has certain limitations, including restricted data access, static model assumptions, and limited regional 

coverage. Future research could incorporate time-varying coefficient models, expand geographic scope, and 

integrate high-frequency and behavioral data to better capture dynamic patterns and provide more targeted 

support for policy and regional strategy design. 
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